References ========== Please find an exhaustive list of the references of the models, metrics, and datasets used in this library in the sections below. Uncertainty Models ------------------ The following uncertainty models are implemented: Deep Evidential Classification ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For Deep Evidential Classification, consider citing: **Evidential Deep Learning to Quantify Classification Uncertainty** * Authors: *Murat Sensoy, Lance Kaplan, and Melih Kandemir* * Paper: `NeurIPS 2018 `__. Beta NLL in Deep Regression ^^^^^^^^^^^^^^^^^^^^^^^^^^^ For Beta NLL in Deep Regression, consider citing: **On the Pitfalls of Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks** * Authors: *Maximilian Seitzer, Arash Tavakoli, Dimitrije Antic, and Georg Martius* * Paper: `ICLR 2022 `__. Deep Evidential Regression ^^^^^^^^^^^^^^^^^^^^^^^^^^ For Deep Evidential Regression, consider citing: **Deep Evidential Regression** * Authors: *Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus* * Paper: `NeurIPS 2020 `__. Variational Inference Bayesian Neural Networks ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For Variational Inference Bayesian Neural Networks, consider citing: **Weight Uncertainty in Neural Networks** * Authors: *Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra* * Paper: `ICML 2015 `__. Deep Ensembles ^^^^^^^^^^^^^^ For Deep Ensembles, consider citing: **Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles** * Authors: *Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell* * Paper: `NeurIPS 2017 `__. Monte-Carlo Dropout ^^^^^^^^^^^^^^^^^^^ For Monte-Carlo Dropout, consider citing: **Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning** * Authors: *Yarin Gal and Zoubin Ghahramani* * Paper: `ICML 2016 `__. Stochastic Weight Averaging ^^^^^^^^^^^^^^^^^^^^^^^^^^^ For Stochastic Weight Averaging, consider citing: **Averaging Weights Leads to Wider Optima and Better Generalization** * Authors: *Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson* * Paper: `UAI 2018 `__. Stochastic Weight Averaging Gaussian ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For Stochastic Weight Averaging Gaussian, consider citing: **A simple baseline for Bayesian uncertainty in deep learning** * Authors: *Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, Andrew Gordon Wilson* * Paper: `NeurIPS 2019 `__. CheckpointCollector ^^^^^^^^^^^^^^^^^^^ For the SGD ensembling version of CheckpointCollector, consider citing: **Checkpoint Ensembles: Ensemble Methods from a Single Training Process** * Authors: *Hugh Chen, Scott Lundberg, and Su-In Lee* * Paper: `ArXiv `__. SnapshotEnsemble ^^^^^^^^^^^^^^^^ For SnapshotEnsemble, consider citing: **Snapshot Ensembles: Train 1, get M for free** * Authors: *Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger* * Paper: `ICLR 2017 `__. BatchEnsemble ^^^^^^^^^^^^^ For BatchEnsemble, consider citing: **BatchEnsemble: An alternative approach to Efficient Ensemble and Lifelong Learning** * Authors: *Yeming Wen, Dustin Tran, and Jimmy Ba* * Paper: `ICLR 2020 `__. Masksembles ^^^^^^^^^^^ For Masksembles, consider citing: **Masksembles for Uncertainty Estimation** * Authors: *Nikita Durasov, Timur Bagautdinov, Pierre Baque, and Pascal Fua* * Paper: `CVPR 2021 `__. MIMO ^^^^ For MIMO, consider citing: **Training independent subnetworks for robust prediction** * Authors: *Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshminarayanan, Andrew M. Dai, and Dustin Tran* * Paper: `ICLR 2021 `__. Packed-Ensembles ^^^^^^^^^^^^^^^^ For Packed-Ensembles, consider citing: **Packed-Ensembles for Efficient Uncertainty Estimation** * Authors: *Olivier Laurent, Adrien Lafage, Enzo Tartaglione, Geoffrey Daniel, Jean-Marc Martinez, Andrei Bursuc, and Gianni Franchi* * Paper: `ICLR 2023 `__. LPBNN ^^^^^ For LPBNN, consider citing: **Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification** * Authors: *Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Severine Dubuisson, Isabelle Bloch* * Paper: `IEEE TPAMI 2024 `__. Stochastic Gradient Hamiltonian Monte Carlo ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For Stochastic Gradient Hamiltonian Monte Carlo (SGHMC), consider citing: **Stochastic Gradient Hamiltonian Monte Carlo** * Authors: *Tianqi Chen, Emily B. Fox, and Carlos Guestrin* * Paper: `ICML 2014 `__. And, for the robust version, **Bayesian Optimization with Robust Bayesian Neural Networks** * Authors: *Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter* * Paper: `NeurIPS 2016 `__. Stochastic Gradient Langevin Dynamics ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For Stochastic Gradient Langevin Dynamics (SGLD), consider citing: **Bayesian Learning via Stochastic Gradient Langevin Dynamics** * Authors: *Max Welling, and Yee Whye Teh* * Paper: `ICML 2011 `__. Data Augmentation Methods ------------------------- Mixup ^^^^^ For Mixup, consider citing: **mixup: Beyond Empirical Risk Minimization** * Authors: *Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz* * Paper: `ICLR 2018 `__. RegMixup ^^^^^^^^ For RegMixup, consider citing: **RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness** * Authors: *Francesco Pinto, Harry Yang, Ser-Nam Lim, Philip H.S. Torr, and Puneet K. Dokania* * Paper: `NeurIPS 2022 `__. MixupIO ^^^^^^^ For MixupIO, consider citing: **On the Pitfall of Mixup for Uncertainty Calibration** * Authors: *Deng-Bao Wang, Lanqing Li, Peilin Zhao, Pheng-Ann Heng, and Min-Ling Zhang* * Paper: `CVPR 2023 __` Warping Mixup ^^^^^^^^^^^^^ For Warping Mixup, consider citing: **Tailoring Mixup to Data using Kernel Warping functions** * Authors: *Quentin Bouniot, Pavlo Mozharovskyi, and Florence d'Alché-Buc* * Paper: `ArXiv 2023 `__. Test-Time-Adaptation with ZERO ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For ZERO, consider citing: **Frustratingly Easy Test-Time Adaptation of Vision-Language Models** * Authors: *Matteo Farina, Gianni Franchi, Giovanni Iacca, Massimiliano Mancini and Elisa Ricci* * Paper: `NeurIPS 2024 `__. Post-Processing Methods ----------------------- Temperature, Vector, & Matrix scaling ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For temperature, vector, & matrix scaling, consider citing: **On Calibration of Modern Neural Networks** * Authors: *Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger* * Paper: `ICML 2017 `__. Monte-Carlo Batch Normalization ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For Monte-Carlo Batch Normalization, consider citing: **Bayesian Uncertainty Estimation for Batch Normalized Deep Networks** * Authors: *Mathias Teye, Hossein Azizpour, and Kevin Smith* * Paper: `ICML 2018 `__. Laplace Approximation ^^^^^^^^^^^^^^^^^^^^^ For Laplace Approximation, consider citing: **Laplace Redux - Effortless Bayesian Deep Learning** * Authors: *Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp Hennig* * Paper: `NeurIPS 2021 `__. Losses ------ Focal Loss ^^^^^^^^^^ For the focal loss, consider citing: **Focal Loss for Dense Object Detection** * Authors: *Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár* * Paper: `TPAMI 2020 `__. Conflictual Loss ^^^^^^^^^^^^^^^^ For the conflictual loss, consider citing: **On the Calibration of Epistemic Uncertainty: Principles, Paradoxes and Conflictual Loss** * Authors: *Mohammed Fellaji, Frédéric Pennerath, Brieuc Conan-Guez, and Miguel Couceiro* * Paper: `ArXiv 2024 `__. Binary Cross-Entropy with Logits Loss with Label Smoothing ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For the binary cross-entropy with logits loss with label smoothing, consider citing: **Rethinking the Inception Architecture for Computer Vision** * Authors: *Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna* * Paper: `CVPR 2016 `__. MaxSup: Fixing Label Smoothing for Improved Feature Representation ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For the cross-entropy with maximum suppression loss, consider citing: **MaxSup: Fixing Label Smoothing for Improved Feature Representation** * Authors: *Yuxuan Zhou, Heng Li, Zhi-Qi Cheng, Xudong Yan, Mario Fritz, and Margret Keuper* * Paper: `ArXiv 2024 `__. Metrics ------- The following metrics are used/implemented. Expected Calibration Error ^^^^^^^^^^^^^^^^^^^^^^^^^^ For the expected calibration error, consider citing: **Obtaining Well Calibrated Probabilities Using Bayesian Binning** * Authors: *Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht* * Paper: `AAAI 2015 `__. Adaptive Calibration Error ^^^^^^^^^^^^^^^^^^^^^^^^^^ For the adaptive calibration error, consider citing: **Measuring Calibration in Deep Learning** * Authors: *Jeremy Nixon, Mike Dusenberry, Ghassen Jerfel, Timothy Nguyen, Jeremiah Liu, Linchuan Zhang, and Dustin Tran* * Paper: `CVPRW 2019 `__. Area Under the Risk-Coverage curve ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For the area under the risk-coverage curve, consider citing: **Selective classification for deep neural networks** * Authors: *Yonatan Geifman and Ran El-Yaniv* * Paper: `NeurIPS 2017 `__. Area Under the Generalized Risk-Coverage curve ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For the area under the generalized risk-coverage curve, consider citing: **Overcoming Common Flaws in the Evaluation of Selective Classification Systems** * Authors: *Jeremias Traub, Till J. Bungert, Carsten T. Lüth, Michael Baumgartner, Klaus H. Maier-Hein, Lena Maier-Hein, and Paul F Jaeger* * Paper: `ArXiv `__. Grouping Loss ^^^^^^^^^^^^^ For the grouping loss, consider citing: **Beyond Calibration: Estimating the Grouping Loss of Modern Neural Networks** * Authors: *Alexandre Perez-Lebel, Marine Le Morvan, and Gaël Varoquaux* * Paper: `ICLR 2023 `__. Datasets -------- The following datasets are used/implemented. MNIST ^^^^^ **Gradient-based learning applied to document recognition** * Authors: *Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner* * Paper: `Proceedings of the IEEE 1998 `__. MNIST-C ^^^^^^^ **MNIST-C: A Robustness Benchmark for Computer Vision** * Authors: *Norman Mu, and Justin Gilmer* * Paper: `ICMLW 2019 `__. Not-MNIST ^^^^^^^^^ * Author: *Yaroslav Bulatov* CIFAR-10 & CIFAR-100 ^^^^^^^^^^^^^^^^^^^^ **Learning multiple layers of features from tiny images** * Authors: *Alex Krizhevsky* * Paper: `MIT Tech Report `__. CIFAR-C, Tiny-ImageNet-C, ImageNet-C ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ **Benchmarking neural network robustness to common corruptions and perturbations** * Authors: *Dan Hendrycks and Thomas Dietterich* * Paper: `ICLR 2019 `__. CIFAR-10 H ^^^^^^^^^^ **Human uncertainty makes classification more robust** * Authors: *Joshua C. Peterson, Ruairidh M. Battleday, Thomas L. Griffiths, and Olga Russakovsky* * Paper: `ICCV 2019 `__. CIFAR-10 N / CIFAR-100 N ^^^^^^^^^^^^^^^^^^^^^^^^ **Learning with Noisy Labels Revisited: A Study Using Real-World Human Annotations** * Authors: *Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu* * Paper: `ICLR 2022 `__. SVHN ^^^^ **Reading digits in natural images with unsupervised feature learning** * Authors: *Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng* * Paper: `NeurIPS Workshops 2011 `__. ImageNet ^^^^^^^^ **Imagenet: A large-scale hierarchical image database** * Authors: *Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei* * Paper: `CVPR 2009 `__. ImageNet-A & ImageNet-0 ^^^^^^^^^^^^^^^^^^^^^^^ **Natural adversarial examples** * Authors: *Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song* * Paper: `CVPR 2021 `__. ImageNet-R ^^^^^^^^^^ **The many faces of robustness: A critical analysis of out-of-distribution generalization** * Authors: *Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al.* * Paper: `ICCV 2021 `__. Textures ^^^^^^^^ **ViM: Out-of-distribution with virtual-logit matching** * Authors: *Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang* * Paper: `CVPR 2022 `__. OpenImage-O ^^^^^^^^^^^ Curation: **ViM: Out-of-distribution with virtual-logit matching** * Authors: *Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang* * Paper: `CVPR 2022 `__. Original Dataset: **The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale.** * Authors: *Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, et al.* * Paper: `IJCV 2020 `__. MUAD ^^^^ **MUAD: Multiple Uncertainties for Autonomous Driving Dataset** * Authors: *Gianni Franchi, Xuanlong Yu, Andrei Bursuc, et al.* * Paper: `BMVC 2022 __` Architectures ------------- ResNet ^^^^^^ **Deep Residual Learning for Image Recognition** * Authors: *Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun* * Paper: `CVPR 2016 `__. Wide-ResNet ^^^^^^^^^^^ **Wide Residual Networks** * Authors: *Sergey Zagoruyko and Nikos Komodakis* * Paper: `BMVC 2016 `__. VGG ^^^ **Very Deep Convolutional Networks for Large-Scale Image Recognition** * Authors: *Karen Simonyan and Andrew Zisserman* * Paper: `ICLR 2015 `__. Layers ------ **Filter Response Normalization Layer: Eliminating Batch Dependence in the Training of Deep Neural Networks** * Authors: *Saurabh Singh and Shankar Krishnan* * Paper: `CVPR 2020 `__.