• Docs >
  • Welcome to Torch Uncertainty
Shortcuts

Welcome to Torch Uncertainty

Welcome to the documentation of TorchUncertainty.

This website contains the documentation for installing and contributing to TorchUncertainty, details on the API, and a comprehensive list of the references of the models and metrics implemented.


Installation

Make sure you have Python 3.10 or later installed, as well as Pytorch (cpu or gpu).

pip install torch-uncertainty

To install TorchUncertainty with contribution in mind, check the contribution page.


Official Implementations

TorchUncertainty also houses multiple official implementations of papers from major conferences & journals.

A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors

  • Authors: Olivier Laurent, Emanuel Aldea, and Gianni Franchi

  • Paper: ICLR 2024.

Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification

  • Authors: Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Severine Dubuisson, and Isabelle Bloch

  • Paper: IEEE TPAMI.

Packed-Ensembles for Efficient Uncertainty Estimation

  • Authors: Olivier Laurent, Adrien Lafage, Enzo Tartaglione, Geoffrey Daniel, Jean-Marc Martinez, Andrei Bursuc, and Gianni Franchi

  • Paper: ICLR 2023.

MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for multiple uncertainty types and tasks

  • Authors: Gianni Franchi, Xuanlong Yu, Andrei Bursuc, Angel Tena, Rémi Kazmierczak, Séverine Dubuisson, Emanuel Aldea, David Filliat

  • Paper: BMVC 2022.

Indices and tables