References¶
Please find an exhaustive list of the references of the models, metrics, and datasets used in this library in the sections below.
Uncertainty Models¶
The following uncertainty models are implemented.
Deep Evidential Classification¶
For Deep Evidential Classification, consider citing:
Evidential Deep Learning to Quantify Classification Uncertainty
Authors: Murat Sensoy, Lance Kaplan, and Melih Kandemir
Paper: NeurIPS 2018.
Beta NLL in Deep Regression¶
For Beta NLL in Deep Regression, consider citing:
On the Pitfalls of Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks
Authors: Maximilian Seitzer, Arash Tavakoli, Dimitrije Antic, and Georg Martius
Paper: ICLR 2022.
Deep Evidential Regression¶
For Deep Evidential Regression, consider citing:
Deep Evidential Regression
Authors: Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus
Paper: NeurIPS 2020.
Variational Inference Bayesian Neural Networks¶
For Variational Inference Bayesian Neural Networks, consider citing:
Weight Uncertainty in Neural Networks
Authors: Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra
Paper: ICML 2015.
Deep Ensembles¶
For Deep Ensembles, consider citing:
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Authors: Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell
Paper: NeurIPS 2017.
Monte-Carlo Dropout¶
For Monte-Carlo Dropout, consider citing:
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Authors: Yarin Gal and Zoubin Ghahramani
Paper: ICML 2016.
Stochastic Weight Averaging¶
For Stochastic Weight Averaging, consider citing:
Averaging Weights Leads to Wider Optima and Better Generalization
Authors: Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson
Paper: UAI 2018.
Stochastic Weight Averaging Gaussian¶
For Stochastic Weight Averaging Gaussian, consider citing:
A simple baseline for Bayesian uncertainty in deep learning
Authors: Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, Andrew Gordon Wilson
Paper: NeurIPS 2019.
CheckpointEnsemble¶
For CheckpointEnsemble, consider citing:
Checkpoint Ensembles: Ensemble Methods from a Single Training Process
Authors: Hugh Chen, Scott Lundberg, and Su-In Lee
Paper: ArXiv.
SnapshotEnsemble¶
For SnapshotEnsemble, consider citing:
Snapshot Ensembles: Train 1, get M for free
Authors: Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger
Paper: ICLR 2017.
BatchEnsemble¶
For BatchEnsemble, consider citing:
BatchEnsemble: An alternative approach to Efficient Ensemble and Lifelong Learning
Authors: Yeming Wen, Dustin Tran, and Jimmy Ba
Paper: ICLR 2020.
Masksembles¶
For Masksembles, consider citing:
Masksembles for Uncertainty Estimation
Authors: Nikita Durasov, Timur Bagautdinov, Pierre Baque, and Pascal Fua
Paper: CVPR 2021.
MIMO¶
For MIMO, consider citing:
Training independent subnetworks for robust prediction
Authors: Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshminarayanan, Andrew M. Dai, and Dustin Tran
Paper: ICLR 2021.
Packed-Ensembles¶
For Packed-Ensembles, consider citing:
Packed-Ensembles for Efficient Uncertainty Estimation
Authors: Olivier Laurent, Adrien Lafage, Enzo Tartaglione, Geoffrey Daniel, Jean-Marc Martinez, Andrei Bursuc, and Gianni Franchi
Paper: ICLR 2023.
LPBNN¶
For LPBNN, consider citing:
Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification
Authors: Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Severine Dubuisson, Isabelle Bloch
Paper: IEEE TPAMI 2024.
Data Augmentation Methods¶
Mixup¶
For Mixup, consider citing:
mixup: Beyond Empirical Risk Minimization
Authors: Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz
Paper: ICLR 2018.
RegMixup¶
For RegMixup, consider citing:
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
Authors: Francesco Pinto, Harry Yang, Ser-Nam Lim, Philip H.S. Torr, and Puneet K. Dokania
Paper: NeurIPS 2022.
MixupIO¶
For MixupIO, consider citing:
On the Pitfall of Mixup for Uncertainty Calibration
Authors: Deng-Bao Wang, Lanqing Li, Peilin Zhao, Pheng-Ann Heng, and Min-Ling Zhang
Paper: CVPR 2023 <https://openaccess.thecvf.com/content/CVPR2023/papers/Wang_On_the_Pitfall_of_Mixup_for_Uncertainty_Calibration_CVPR_2023_paper.pdf>__
Warping Mixup¶
For Warping Mixup, consider citing:
Tailoring Mixup to Data using Kernel Warping functions
Authors: Quentin Bouniot, Pavlo Mozharovskyi, and Florence d’Alché-Buc
Paper: ArXiv 2023.
Post-Processing Methods¶
Temperature, Vector, & Matrix scaling¶
For temperature, vector, & matrix scaling, consider citing:
On Calibration of Modern Neural Networks
Authors: Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger
Paper: ICML 2017.
Monte-Carlo Batch Normalization¶
For Monte-Carlo Batch Normalization, consider citing:
Bayesian Uncertainty Estimation for Batch Normalized Deep Networks
Authors: Mathias Teye, Hossein Azizpour, and Kevin Smith
Paper: ICML 2018.
Laplace Approximation¶
For Laplace Approximation, consider citing:
Laplace Redux - Effortless Bayesian Deep Learning
Authors: Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp Hennig
Paper: NeurIPS 2021.
Losses¶
Focal Loss¶
For the focal loss, consider citing:
Focal Loss for Dense Object Detection
Authors: Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár
Paper: TPAMI 2020.
Conflictual Loss¶
For the conflictual loss, consider citing:
On the Calibration of Epistemic Uncertainty: Principles, Paradoxes and Conflictual Loss
Authors: Mohammed Fellaji, Frédéric Pennerath, Brieuc Conan-Guez, and Miguel Couceiro
Paper: ArXiv 2024.
Binary Cross-Entropy with Logits Loss with Label Smoothing¶
For the binary cross-entropy with logits loss with label smoothing, consider citing:
Rethinking the Inception Architecture for Computer Vision
Authors: Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna
Paper: CVPR 2016.
Metrics¶
The following metrics are used/implemented.
Expected Calibration Error¶
For the expected calibration error, consider citing:
Obtaining Well Calibrated Probabilities Using Bayesian Binning
Authors: Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht
Paper: AAAI 2015.
Adaptive Calibration Error¶
For the adaptive calibration error, consider citing:
Measuring Calibration in Deep Learning
Authors: Jeremy Nixon, Mike Dusenberry, Ghassen Jerfel, Timothy Nguyen, Jeremiah Liu, Linchuan Zhang, and Dustin Tran
Paper: CVPRW 2019.
Area Under the Risk-Coverage curve¶
For the area under the risk-coverage curve, consider citing:
Selective classification for deep neural networks
Authors: Yonatan Geifman and Ran El-Yaniv
Paper: NeurIPS 2017.
Area Under the Generalized Risk-Coverage curve¶
For the area under the generalized risk-coverage curve, consider citing:
Overcoming Common Flaws in the Evaluation of Selective Classification Systems
Authors: Jeremias Traub, Till J. Bungert, Carsten T. Lüth, Michael Baumgartner, Klaus H. Maier-Hein, Lena Maier-Hein, and Paul F Jaeger
Paper: ArXiv.
Grouping Loss¶
For the grouping loss, consider citing:
Beyond Calibration: Estimating the Grouping Loss of Modern Neural Networks
Authors: Alexandre Perez-Lebel, Marine Le Morvan, and Gaël Varoquaux
Paper: ICLR 2023.
Datasets¶
The following datasets are used/implemented.
MNIST¶
Gradient-based learning applied to document recognition
Authors: Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner
Paper: Proceedings of the IEEE 1998.
MNIST-C¶
MNIST-C: A Robustness Benchmark for Computer Vision
Authors: Norman Mu, and Justin Gilmer
Paper: ICMLW 2019.
Not-MNIST¶
Author: Yaroslav Bulatov
CIFAR-10 & CIFAR-100¶
Learning multiple layers of features from tiny images
Authors: Alex Krizhevsky
Paper: MIT Tech Report.
CIFAR-C, Tiny-ImageNet-C, ImageNet-C¶
Benchmarking neural network robustness to common corruptions and perturbations
Authors: Dan Hendrycks and Thomas Dietterich
Paper: ICLR 2019.
CIFAR-10 H¶
Human uncertainty makes classification more robust
Authors: Joshua C. Peterson, Ruairidh M. Battleday, Thomas L. Griffiths, and Olga Russakovsky
Paper: ICCV 2019.
CIFAR-10 N / CIFAR-100 N¶
Learning with Noisy Labels Revisited: A Study Using Real-World Human Annotations
Authors: Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu
Paper: ICLR 2022.
SVHN¶
Reading digits in natural images with unsupervised feature learning
Authors: Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng
Paper: NeurIPS Workshops 2011.
ImageNet¶
Imagenet: A large-scale hierarchical image database
Authors: Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei
Paper: CVPR 2009.
ImageNet-A & ImageNet-0¶
Natural adversarial examples
Authors: Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song
Paper: CVPR 2021.
ImageNet-R¶
The many faces of robustness: A critical analysis of out-of-distribution generalization
Authors: Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al.
Paper: ICCV 2021.
Textures¶
ViM: Out-of-distribution with virtual-logit matching
Authors: Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang
Paper: CVPR 2022.
OpenImage-O¶
Curation:
ViM: Out-of-distribution with virtual-logit matching
Authors: Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang
Paper: CVPR 2022.
Original Dataset:
The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale.
Authors: Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, et al.
Paper: IJCV 2020.
MUAD¶
MUAD: Multiple Uncertainties for Autonomous Driving Dataset
Authors: Gianni Franchi, Xuanlong Yu, Andrei Bursuc, et al.
Paper: BMVC 2022 <https://arxiv.org/pdf/2203.01437.pdf>__
Architectures¶
ResNet¶
Deep Residual Learning for Image Recognition
Authors: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun
Paper: CVPR 2016.
Wide-ResNet¶
Wide Residual Networks
Authors: Sergey Zagoruyko and Nikos Komodakis
Paper: BMVC 2016.
VGG¶
Very Deep Convolutional Networks for Large-Scale Image Recognition
Authors: Karen Simonyan and Andrew Zisserman
Paper: ICLR 2015.
Layers¶
Filter Response Normalization Layer: Eliminating Batch Dependence in the Training of Deep Neural Networks
Authors: Saurabh Singh and Shankar Krishnan
Paper: CVPR 2020.