Source code for torch_uncertainty.datamodules.classification.mnist

from pathlib import Path
from typing import Literal

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST, FashionMNIST
from torchvision.transforms import v2

from torch_uncertainty.datamodules import TUDataModule
from torch_uncertainty.datasets.classification import MNISTC, NotMNIST
from torch_uncertainty.datasets.utils import create_train_val_split
from torch_uncertainty.transforms import Cutout


[docs] class MNISTDataModule(TUDataModule): num_classes = 10 num_channels = 1 input_shape = (1, 28, 28) training_task = "classification" ood_datasets = ["fashion", "notMNIST"] mean = (0.1307,) std = (0.3081,) def __init__( self, root: str | Path, batch_size: int, eval_batch_size: int | None = None, eval_ood: bool = False, eval_shift: bool = False, ood_ds: Literal["fashion", "notMNIST"] = "fashion", num_tta: int = 1, val_split: float | None = None, postprocess_set: Literal["val", "test"] = "val", num_workers: int = 1, train_transform: nn.Module | None = None, test_transform: nn.Module | None = None, ood_transform: nn.Module | None = None, basic_augment: bool = True, cutout: int | None = None, pin_memory: bool = True, persistent_workers: bool = True, ) -> None: """DataModule for MNIST. Args: root (str): Root directory of the datasets. eval_ood (bool): Whether to evaluate on out-of-distribution data. Defaults to ``False``. eval_shift (bool): Whether to evaluate on shifted data. Defaults to ``False``. batch_size (int): Number of samples per batch during training. eval_batch_size (int | None) : Number of samples per batch during evaluation (val and test). Set to :attr:`batch_size` if ``None``. Defaults to ``None``. ood_ds (str): Which out-of-distribution dataset to use. Defaults to ``"fashion"``; `fashion` stands for FashionMNIST and `notMNIST` for notMNIST. val_split (float): Share of samples to use for validation. Defaults to ``0.0``. num_tta (int): Number of test-time augmentations (TTA). Defaults to ``1`` (no TTA). postprocess_set (str, optional): The post-hoc calibration dataset to use for the post-processing method. Defaults to ``val``. num_workers (int): Number of workers to use for data loading. Defaults to ``1``. train_transform (nn.Module | None): Custom training transform. Defaults to ``None``. If not provided, a default transform is used. test_transform (nn.Module | None): Custom test transform. Defaults to ``None``. If not provided, a default transform is used. ood_transform (nn.Module | None): Custom transform for out-of-distribution datasets. Defaults to ``None``. If not provided, a default transform is used. basic_augment (bool): Whether to apply base augmentations. Defaults to ``True``. cutout (int): Size of cutout to apply to images. Defaults to ``None``. pin_memory (bool): Whether to pin memory. Defaults to ``True``. persistent_workers (bool): Whether to use persistent workers. Defaults to ``True``. """ super().__init__( root=root, batch_size=batch_size, eval_batch_size=eval_batch_size, val_split=val_split, num_tta=num_tta, postprocess_set=postprocess_set, num_workers=num_workers, pin_memory=pin_memory, persistent_workers=persistent_workers, ) self.eval_ood = eval_ood self.eval_shift = eval_shift self.batch_size = batch_size self.dataset = MNIST if ood_ds == "fashion": self.ood_dataset = FashionMNIST elif ood_ds == "notMNIST": self.ood_dataset = NotMNIST else: raise ValueError(f"`ood_ds` should be in {self.ood_datasets}. Got {ood_ds}.") self.shift_dataset = MNISTC self.shift_severity = 1 if train_transform is not None: self.train_transform = train_transform else: basic_transform = v2.RandomCrop(28, padding=4) if basic_augment else nn.Identity() main_transform = Cutout(cutout) if cutout else nn.Identity() self.train_transform = v2.Compose( [ v2.ToImage(), basic_transform, main_transform, v2.ToDtype(dtype=torch.float32, scale=True), v2.Normalize(mean=self.mean, std=self.std), ] ) if num_tta != 1: self.test_transform = train_transform elif test_transform is not None: self.test_transform = test_transform else: self.test_transform = v2.Compose( [ v2.ToImage(), v2.CenterCrop(28), v2.ToDtype(dtype=torch.float32, scale=True), v2.Normalize(mean=self.mean, std=self.std), ] ) if self.eval_ood: if ood_transform is not None: self.ood_transform = ood_transform else: # NotMNIST has 3 channels self.ood_transform = v2.Compose( [ v2.ToImage(), v2.Grayscale(num_output_channels=1), v2.CenterCrop(28), v2.ToDtype(dtype=torch.float32, scale=True), v2.Normalize(mean=self.mean, std=self.std), ] )
[docs] def prepare_data(self) -> None: # coverage: ignore """Download the datasets.""" self.dataset(self.root, train=True, download=True) self.dataset(self.root, train=False, download=True) if self.eval_ood: self.ood_dataset(self.root, download=True) if self.eval_shift: self.shift_dataset(self.root, download=True)
[docs] def setup(self, stage: Literal["fit", "test"] | None = None) -> None: """Set up the datasets for training, validation, and testing. Args: stage (Literal["fit", "test"] | None): Stage of the setup process. Defaults to ``None``. """ if stage == "fit" or stage is None: full = self.dataset( self.root, train=True, download=False, transform=self.train_transform, ) if self.val_split: self.train, self.val = create_train_val_split( full, self.val_split, self.test_transform, ) else: self.train = full self.val = self.dataset( self.root, train=False, download=False, transform=self.test_transform, ) if stage == "test" or stage is None: self.test = self.dataset( self.root, train=False, download=False, transform=self.test_transform, ) if stage not in ["fit", "test", None]: raise ValueError(f"Stage {stage} is not supported.") if self.eval_ood: self.ood = self.ood_dataset( self.root, download=False, transform=self.ood_transform, ) if self.eval_shift: self.shift = self.shift_dataset( self.root, download=False, transform=self.test_transform, )
[docs] def test_dataloader(self) -> list[DataLoader]: """Get the test dataloaders for MNIST. Return: list[DataLoader]: Dataloaders of the MNIST test set (in distribution data), FashionMNIST or NotMNIST test split (out-of-distribution data), and/or MNISTC (shifted data). """ dataloader = [self._data_loader(self.get_test_set(), training=False, shuffle=False)] if self.eval_ood: dataloader.append(self._data_loader(self.get_ood_set(), training=False, shuffle=False)) if self.eval_shift: dataloader.append( self._data_loader(self.get_shift_set(), training=False, shuffle=False) ) return dataloader