Shortcuts

Source code for torch_uncertainty.datamodules.classification.uci.htru2

from pathlib import Path

from torch_uncertainty.datasets.classification import HTRU2

from .uci_classification import UCIClassificationDataModule


[docs]class HTRU2DataModule(UCIClassificationDataModule): def __init__( self, root: str | Path, batch_size: int, val_split: float = 0.0, test_split: float = 0.2, num_workers: int = 1, pin_memory: bool = True, persistent_workers: bool = True, binary: bool = True, ) -> None: """The HTRU2 UCI classification datamodule. Args: root (string): Root directory of the datasets. batch_size (int): The batch size for training and testing. val_split (float, optional): Share of validation samples among the non-test samples. Defaults to ``0``. test_split (float, optional): Share of test samples. Defaults to ``0.2``. num_workers (int, optional): How many subprocesses to use for data loading. Defaults to ``1``. pin_memory (bool, optional): Whether to pin memory in the GPU. Defaults to ``True``. persistent_workers (bool, optional): Whether to use persistent workers. Defaults to ``True``. binary (bool, optional): Whether to use binary classification. Defaults to ``True``. """ super().__init__( root=root, dataset=HTRU2, batch_size=batch_size, val_split=val_split, test_split=test_split, num_workers=num_workers, pin_memory=pin_memory, persistent_workers=persistent_workers, binary=binary, )