Source code for torch_uncertainty.datasets.classification.uci.bank_marketing
import logging
from collections.abc import Callable
from pathlib import Path
import numpy as np
import pandas as pd
import torch
from torchvision.datasets.utils import (
download_and_extract_archive,
extract_archive,
)
from .uci_classification import UCIClassificationDataset
[docs]class BankMarketing(UCIClassificationDataset):
"""The bank Marketing UCI classification dataset.
Args:
root (str): Root directory of the datasets.
train (bool, optional): If True, creates dataset from training set,
otherwise creates from test set.
transform (callable, optional): A function/transform that takes in a
numpy array and returns a transformed version.
target_transform (callable, optional): A function/transform that takes
in the target and transforms it.
download (bool, optional): If true, downloads the dataset from the
internet and puts it in root directory. If dataset is already
downloaded, it is not downloaded again.
binary (bool, optional): Whether to use binary classification. Defaults
to ``True``.
Note - License:
The licenses of the datasets may differ from TorchUncertainty's
license. Check before use.
"""
md5_zip = "3a3c6c4189975ea1f3040dbd60ad106c"
url = "https://archive.ics.uci.edu/static/public/222/bank+marketing.zip"
dataset_name = "bank+marketing"
filename = "bank-additional-full.csv"
num_features = 62
def __init__(
self,
root: Path | str,
transform: Callable | None = None,
target_transform: Callable | None = None,
binary: bool = True,
download: bool = False,
train: bool = True,
test_split: float = 0.2,
split_seed: int = 21893027,
) -> None:
super().__init__(
root,
transform,
target_transform,
binary,
download,
train,
test_split,
split_seed,
)
[docs] def download(self) -> None:
"""Download and extract dataset."""
if self._check_integrity():
logging.info("Files already downloaded and verified")
return
download_and_extract_archive(
self.url,
download_root=self.root,
filename="bank+marketing.zip",
md5=self.md5_zip,
)
extract_archive(self.root / "bank-additional.zip", self.root / "bank-marketing")
def _make_dataset(self) -> None:
"""Create dataset from extracted files."""
data = pd.read_csv(
self.root / "bank-marketing" / "bank-additional" / self.filename,
sep=";",
)
data["y"] = np.where(data["y"] == "yes", 1, 0)
self.targets = torch.as_tensor(data["y"].values, dtype=torch.long)
self.data = data.drop(columns=["y"])
categorical_columns = self.data.select_dtypes(include="object").columns
for col in categorical_columns:
if self.data[col].nunique() == 2:
self.data[col] = np.where(self.data[col] == "yes", 1, 0)
self.data = torch.as_tensor(
pd.get_dummies(self.data).astype(float).values, dtype=torch.float32
)
self.num_features = self.data.shape[1]