Source code for torch_uncertainty.datasets.frost
import logging
from collections.abc import Callable
from pathlib import Path
from typing import Any
from PIL import Image
from torchvision.datasets import VisionDataset
from torchvision.datasets.utils import (
check_integrity,
download_and_extract_archive,
)
def pil_loader(path: Path) -> Image.Image:
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with path.open("rb") as f:
img = Image.open(f)
return img.convert("RGB")
[docs]class FrostImages(VisionDataset): # TODO: Use ImageFolder
url = "https://zenodo.org/records/10438904/files/frost.zip"
zip_md5 = "d82f29f620d43a68e71e34b28f7c35cb"
filename = "frost.zip"
samples = [
"frost1.png",
"frost2.png",
"frost3.jpg",
"frost4.jpg",
"frost5.jpg",
]
def __init__(
self,
root: str | Path,
transform: Callable[..., Any] | None,
target_transform: Callable[..., Any] | None = None,
download: bool = False,
) -> None:
self.root = Path(root)
if download:
self.download()
if not self._check_integrity():
raise RuntimeError(
"Dataset not found or corrupted. You can use download=True to " "download it."
)
super().__init__(
self.root / "frost",
transform=transform,
target_transform=target_transform,
)
self.loader = pil_loader
def _check_integrity(self) -> bool:
fpath = self.root / self.filename
return check_integrity(
fpath,
self.zip_md5,
)
def download(self) -> None:
if self._check_integrity():
logging.info("Files already downloaded and verified")
return
download_and_extract_archive(
self.url,
download_root=self.root,
filename=self.filename,
md5=self.zip_md5,
)
logging.info("Downloaded %s to %s.", self.filename, self.root)
def __getitem__(self, index: int) -> Any:
"""Get the samples of the dataset.
Args:
index (int): Index
Returns:
tuple: (sample, target) where target is class_index of the target class.
"""
path = self.root / self.samples[index]
sample = self.loader(path)
if self.transform is not None:
sample = self.transform(sample)
return sample
def __len__(self) -> int:
"""Get the length of the dataset."""
return len(self.samples)