Source code for torch_uncertainty.losses.bayesian
import torch
from torch import Tensor, nn
from torch.distributions import Independent
from torch_uncertainty.layers.bayesian import bayesian_modules
from torch_uncertainty.utils.distributions import get_dist_class
[docs]class KLDiv(nn.Module):
def __init__(self, model: nn.Module) -> None:
"""KL divergence loss for Bayesian Neural Networks. Gathers the KL from the
modules computed in the forward passes.
Args:
model (nn.Module): Bayesian Neural Network
"""
super().__init__()
self.model = model
def forward(self) -> Tensor:
return self._kl_div()
def _kl_div(self) -> Tensor:
"""Gathers pre-computed KL-Divergences from :attr:`model`."""
kl_divergence = torch.zeros(1)
count = 0
for module in self.model.modules():
if isinstance(module, bayesian_modules):
kl_divergence = kl_divergence.to(device=module.lvposterior.device)
kl_divergence += module.lvposterior - module.lprior
count += 1
return kl_divergence / count
[docs]class ELBOLoss(nn.Module):
def __init__(
self,
model: nn.Module | None,
inner_loss: nn.Module,
kl_weight: float,
num_samples: int,
dist_family: str | None = None,
) -> None:
"""The Evidence Lower Bound (ELBO) loss for Bayesian Neural Networks.
ELBO loss for Bayesian Neural Networks. Use this loss function with the
objective that you seek to minimize as :attr:`inner_loss`.
Args:
model (nn.Module): The Bayesian Neural Network to compute the loss for
inner_loss (nn.Module): The loss function to use during training
kl_weight (float): The weight of the KL divergence term
num_samples (int): The number of samples to use for the ELBO loss
dist_family (str, optional): The distribution family to use for the
output of the model. ``None`` means point-wise prediction. Defaults to ``None``.
Note:
Set the model to None if you use the ELBOLoss within
the ClassificationRoutine. It will get filled automatically.
"""
super().__init__()
_elbo_loss_checks(inner_loss, kl_weight, num_samples)
self.set_model(model)
self.inner_loss = inner_loss
self.kl_weight = kl_weight
self.num_samples = num_samples
self.dist_family = dist_family
[docs] def forward(self, inputs: Tensor, targets: Tensor) -> Tensor:
"""Gather the KL divergence from the Bayesian modules and aggregate
the ELBO loss for a given network.
Args:
inputs (Tensor): The inputs of the Bayesian Neural Network
targets (Tensor): The target values
Returns:
Tensor: The aggregated ELBO loss
"""
aggregated_elbo = torch.zeros(1, device=inputs.device)
dist_class = get_dist_class(self.dist_family) if self.dist_family is not None else None
for _ in range(self.num_samples):
out = self.model(inputs)
if dist_class is not None:
# Wrap the distribution in an Independent distribution for log_prob computation.
out = Independent(dist_class(**out), 1)
aggregated_elbo += self.inner_loss(out, targets)
# TODO: This shouldn't be necessary
aggregated_elbo += self.kl_weight * self._kl_div().to(inputs.device)
return aggregated_elbo / self.num_samples
def set_model(self, model: nn.Module | None) -> None:
self.model = model
if model is not None:
self._kl_div = KLDiv(model)
def _elbo_loss_checks(inner_loss: nn.Module, kl_weight: float, num_samples: int) -> None:
if isinstance(inner_loss, type):
raise TypeError("The inner_loss should be an instance of a class." f"Got {inner_loss}.")
if kl_weight < 0:
raise ValueError(f"The KL weight should be non-negative. Got {kl_weight}.")
if num_samples < 1:
raise ValueError("The number of samples should not be lower than 1." f"Got {num_samples}.")
if not isinstance(num_samples, int):
raise TypeError("The number of samples should be an integer. " f"Got {type(num_samples)}.")