Shortcuts

Source code for torch_uncertainty.losses.regression

from typing import Literal

import torch
from torch import Tensor, nn
from torch.distributions import Distribution, Independent

from torch_uncertainty.utils.distributions import NormalInverseGamma


[docs]class DistributionNLLLoss(nn.Module): def __init__(self, reduction: Literal["mean", "sum"] | None = "mean") -> None: """Negative Log-Likelihood loss using given distributions as inputs. Args: reduction (str, optional): specifies the reduction to apply to the output:``'none'`` | ``'mean'`` | ``'sum'``. Defaults to "mean". """ super().__init__() self.reduction = reduction
[docs] def forward( self, dist: Distribution, targets: Tensor, padding_mask: Tensor | None = None, ) -> Tensor: """Compute the NLL of the targets given predicted distributions. Args: dist (Distribution): The predicted distributions targets (Tensor): The target values padding_mask (Tensor, optional): The padding mask. Defaults to None. Sets the loss to 0 for padded values. """ loss = -dist.log_prob(targets) if padding_mask is not None: loss = loss.masked_fill(padding_mask, float("nan")) if self.reduction == "mean": loss = loss.nanmean() elif self.reduction == "sum": loss = loss.nansum() return loss
[docs]class DERLoss(DistributionNLLLoss): def __init__(self, reg_weight: float, reduction: str | None = "mean") -> None: """The Deep Evidential Regression loss. This loss combines the negative log-likelihood loss of the normal inverse gamma distribution and a weighted regularization term. Args: reg_weight (float): The weight of the regularization term. reduction (str, optional): specifies the reduction to apply to the output:``'none'`` | ``'mean'`` | ``'sum'``. Reference: Amini, A., Schwarting, W., Soleimany, A., & Rus, D. (2019). Deep evidential regression. https://arxiv.org/abs/1910.02600. """ super().__init__(reduction=None) if reduction not in ("none", "mean", "sum") and reduction is not None: raise ValueError(f"{reduction} is not a valid value for reduction.") self.der_reduction = reduction if reg_weight < 0: raise ValueError( "The regularization weight should be non-negative, but got " f"{reg_weight}." ) self.reg_weight = reg_weight def _reg(self, dist: NormalInverseGamma | Independent, targets: Tensor) -> Tensor: if isinstance(dist, Independent): dist = dist.base_dist return torch.norm(targets - dist.loc, 1, dim=1, keepdim=True) * ( 2 * dist.lmbda + dist.alpha ) def forward( self, dist: NormalInverseGamma, targets: Tensor, ) -> Tensor: loss_nll = super().forward(dist, targets) loss_reg = self._reg(dist, targets) loss = loss_nll + self.reg_weight * loss_reg if self.der_reduction == "mean": return loss.mean() if self.der_reduction == "sum": return loss.sum() return loss
[docs]class BetaNLL(nn.Module): def __init__(self, beta: float = 0.5, reduction: str | None = "mean") -> None: """The Beta Negative Log-likelihood loss. Args: beta (float): TParameter from range [0, 1] controlling relative weighting between data points, where `0` corresponds to high weight on low error points and `1` to an equal weighting. reduction (str, optional): specifies the reduction to apply to the output:``'none'`` | ``'mean'`` | ``'sum'``. Reference: Seitzer, M., Tavakoli, A., Antic, D., & Martius, G. (2022). On the pitfalls of heteroscedastic uncertainty estimation with probabilistic neural networks. https://arxiv.org/abs/2203.09168. """ super().__init__() if beta < 0 or beta > 1: raise ValueError("The beta parameter should be in range [0, 1], but got " f"{beta}.") self.beta = beta self.nll_loss = nn.GaussianNLLLoss(reduction="none") if reduction not in ("none", "mean", "sum"): raise ValueError(f"{reduction} is not a valid value for reduction.") self.reduction = reduction def forward(self, mean: Tensor, targets: Tensor, variance: Tensor) -> Tensor: loss = self.nll_loss(mean, targets, variance) * (variance.detach() ** self.beta) if self.reduction == "mean": return loss.mean() if self.reduction == "sum": return loss.sum() return loss