Shortcuts

Source code for torch_uncertainty.metrics.regression.relative_error

import torch
from torch import Tensor
from torchmetrics import MeanAbsoluteError, MeanSquaredError


[docs]class MeanGTRelativeAbsoluteError(MeanAbsoluteError): def __init__(self, **kwargs) -> None: r"""Compute Mean Absolute Error relative to the Ground Truth (MAErel or ARErel). .. math:: \text{MAErel} = \frac{1}{N}\sum_i^N \frac{| y_i - \hat{y_i} |}{y_i} where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions. As input to ``forward`` and ``update`` the metric accepts the following input: - ``preds`` (:class:`~torch.Tensor`): Predictions from model - ``target`` (:class:`~torch.Tensor`): Ground truth values As output of ``forward`` and ``compute`` the metric returns the following output: - ``rel_mean_absolute_error`` (:class:`~torch.Tensor`): A tensor with the relative mean absolute error over the state Args: kwargs: Additional keyword arguments, see `Advanced metric settings <https://torchmetrics.readthedocs.io/en/stable/pages/overview.html#metric-kwargs>`_. Reference: As in e.g. From big to small: Multi-scale local planar guidance for monocular depth estimation """ super().__init__(**kwargs)
[docs] def update(self, pred: Tensor, target: Tensor) -> None: """Update state with predictions and targets.""" return super().update(pred / target, torch.ones_like(target))
[docs]class MeanGTRelativeSquaredError(MeanSquaredError): def __init__(self, squared: bool = True, num_outputs: int = 1, **kwargs) -> None: r"""Compute mean squared error relative to the Ground Truth (MSErel or SRE). .. math:: \text{MSErel} = \frac{1}{N}\sum_i^N \frac{(y_i - \hat{y_i})^2}{y_i} Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions. As input to ``forward`` and ``update`` the metric accepts the following input: - ``preds`` (:class:`~torch.Tensor`): Predictions from model - ``target`` (:class:`~torch.Tensor`): Ground truth values As output of ``forward`` and ``compute`` the metric returns the following output: - ``rel_mean_squared_error`` (:class:`~torch.Tensor`): A tensor with the relative mean squared error Args: squared: If True returns MSErel value, if False returns RMSErel value. num_outputs: Number of outputs in multioutput setting kwargs: Additional keyword arguments, see `Advanced metric settings <https://torchmetrics.readthedocs.io/en/stable/pages/overview.html#metric-kwargs>`_. Reference: As in e.g. From big to small: Multi-scale local planar guidance for monocular depth estimation """ super().__init__(squared, num_outputs, **kwargs)
[docs] def update(self, pred: Tensor, target: Tensor) -> None: """Update state with predictions and targets.""" return super().update(pred / torch.sqrt(target), torch.sqrt(target))