Source code for torch_uncertainty.metrics.regression.relative_error
import torch
from torch import Tensor
from torchmetrics import MeanAbsoluteError, MeanSquaredError
[docs]class MeanGTRelativeAbsoluteError(MeanAbsoluteError):
def __init__(self, **kwargs) -> None:
r"""Compute Mean Absolute Error relative to the Ground Truth (MAErel
or ARErel).
.. math:: \text{MAErel} = \frac{1}{N}\sum_i^N \frac{| y_i - \hat{y_i} |}{y_i}
where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a
tensor of predictions.
As input to ``forward`` and ``update`` the metric accepts the following
input:
- ``preds`` (:class:`~torch.Tensor`): Predictions from model
- ``target`` (:class:`~torch.Tensor`): Ground truth values
As output of ``forward`` and ``compute`` the metric returns the
following output:
- ``rel_mean_absolute_error`` (:class:`~torch.Tensor`): A tensor with
the relative mean absolute error over the state
Args:
kwargs: Additional keyword arguments, see `Advanced metric settings
<https://torchmetrics.readthedocs.io/en/stable/pages/overview.html#metric-kwargs>`_.
Reference:
As in e.g. From big to small: Multi-scale local planar guidance for
monocular depth estimation
"""
super().__init__(**kwargs)
[docs] def update(self, pred: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets."""
return super().update(pred / target, torch.ones_like(target))
[docs]class MeanGTRelativeSquaredError(MeanSquaredError):
def __init__(self, squared: bool = True, num_outputs: int = 1, **kwargs) -> None:
r"""Compute mean squared error relative to the Ground Truth (MSErel or SRE).
.. math:: \text{MSErel} = \frac{1}{N}\sum_i^N \frac{(y_i - \hat{y_i})^2}{y_i}
Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a
tensor of predictions.
As input to ``forward`` and ``update`` the metric accepts the following
input:
- ``preds`` (:class:`~torch.Tensor`): Predictions from model
- ``target`` (:class:`~torch.Tensor`): Ground truth values
As output of ``forward`` and ``compute`` the metric returns the
following output:
- ``rel_mean_squared_error`` (:class:`~torch.Tensor`): A tensor with
the relative mean squared error
Args:
squared: If True returns MSErel value, if False returns RMSErel
value.
num_outputs: Number of outputs in multioutput setting
kwargs: Additional keyword arguments, see `Advanced metric settings
<https://torchmetrics.readthedocs.io/en/stable/pages/overview.html#metric-kwargs>`_.
Reference:
As in e.g. From big to small: Multi-scale local planar guidance for
monocular depth estimation
"""
super().__init__(squared, num_outputs, **kwargs)
[docs] def update(self, pred: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets."""
return super().update(pred / torch.sqrt(target), torch.sqrt(target))