Shortcuts

Source code for torch_uncertainty.models.wrappers.deep_ensembles

import copy
from typing import Literal

import torch
from torch import nn


class _DeepEnsembles(nn.Module):
    def __init__(
        self,
        models: list[nn.Module],
    ) -> None:
        """Create a classification deep ensembles from a list of models."""
        super().__init__()
        self.core_models = nn.ModuleList(models)
        self.num_estimators = len(models)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        r"""Return the logits of the ensemble.

        Args:
            x (Tensor): The input of the model.

        Returns:
            Tensor: The output of the model with shape :math:`(N \times B, C)`,
                where :math:`B` is the batch size, :math:`N` is the number of
                estimators, and :math:`C` is the number of classes.
        """
        return torch.cat([model.forward(x) for model in self.core_models], dim=0)


class _RegDeepEnsembles(_DeepEnsembles):
    def __init__(
        self,
        probabilistic: bool,
        models: list[nn.Module],
    ) -> None:
        """Create a regression deep ensembles from a list of models."""
        super().__init__(models)
        self.probabilistic = probabilistic

    def forward(self, x: torch.Tensor) -> torch.Tensor | dict[str, torch.Tensor]:
        r"""Return the logits of the ensemble.

        Args:
            x (Tensor): The input of the model.

        Returns:
            Tensor | dict[str, Tensor]: The output of the model with shape :math:`(N \times B, *)`
                where :math:`B` is the batch size, :math:`N` is the number of estimators, and
                :math:`*` is any other dimension.
        """
        if self.probabilistic:
            out = [model.forward(x) for model in self.core_models]
            key_set = {tuple(o.keys()) for o in out}
            if len(key_set) != 1:
                raise ValueError("The output of the models must have the same keys.")
            return {k: torch.cat([o[k] for o in out], dim=0) for k in key_set.pop()}
        return super().forward(x)


[docs]def deep_ensembles( models: list[nn.Module] | nn.Module, num_estimators: int | None = None, task: Literal[ "classification", "regression", "segmentation", "pixel_regression" ] = "classification", probabilistic: bool | None = None, reset_model_parameters: bool = False, ) -> _DeepEnsembles: """Build a Deep Ensembles out of the original models. Args: models (list[nn.Module] | nn.Module): The model to be ensembled. num_estimators (int | None): The number of estimators in the ensemble. task (Literal["classification", "regression", "segmentation", "pixel_regression"]): The model task. Defaults to "classification". probabilistic (bool): Whether the regression model is probabilistic. reset_model_parameters (bool): Whether to reset the model parameters when :attr:models is a module or a list of length 1. Returns: _DeepEnsembles: The ensembled model. Raises: ValueError: If :attr:num_estimators is not specified and :attr:models is a module (or singleton list). ValueError: If :attr:num_estimators is less than 2 and :attr:models is a module (or singleton list). ValueError: If :attr:num_estimators is defined while :attr:models is a (non-singleton) list. References: Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty estimation using deep ensembles. In NeurIPS, 2017. """ if isinstance(models, list) and len(models) == 0: raise ValueError("Models must not be an empty list.") if (isinstance(models, list) and len(models) == 1) or isinstance(models, nn.Module): if num_estimators is None: raise ValueError("if models is a module, num_estimators must be specified.") if num_estimators < 2: raise ValueError(f"num_estimators must be at least 2. Got {num_estimators}.") if isinstance(models, list): models = models[0] models = [copy.deepcopy(models) for _ in range(num_estimators)] if reset_model_parameters: for model in models: for layer in model.modules(): if hasattr(layer, "reset_parameters"): layer.reset_parameters() elif isinstance(models, list) and len(models) > 1 and num_estimators is not None: raise ValueError("num_estimators must be None if you provided a non-singleton list.") if task in ("classification", "segmentation"): return _DeepEnsembles(models=models) if task in ("regression", "pixel_regression"): if probabilistic is None: raise ValueError("probabilistic must be specified for regression models.") return _RegDeepEnsembles(probabilistic=probabilistic, models=models) raise ValueError(f"Unknown task: {task}.")