Source code for torch_uncertainty.models.wrappers.swag
import copy
from collections.abc import Mapping
import torch
from torch import Tensor, nn
from torch.utils.data import DataLoader
from .swa import SWA
[docs]class SWAG(SWA):
swag_stats: dict[str, Tensor]
prfx = "model.swag_stats."
def __init__(
self,
model: nn.Module,
cycle_start: int,
cycle_length: int,
scale: float = 1.0,
diag_covariance: bool = False,
max_num_models: int = 20,
var_clamp: float = 1e-6,
num_estimators: int = 16,
) -> None:
"""Stochastic Weight Averaging Gaussian (SWAG).
Update the SWAG posterior every `cycle_length` epochs starting at
`cycle_start`. Samples :attr:`num_estimators` models from the SWAG
posterior after each update. Uses the SWAG posterior estimation only
at test time. Otherwise, uses the base model for training.
Call :meth:`update_wrapper` at the end of each epoch. It will update
the SWAG posterior if the current epoch number minus :attr:`cycle_start`
is a multiple of :attr:`cycle_length`. Call :meth:`bn_update` to update
the batchnorm statistics of the current SWAG samples.
Args:
model (nn.Module): PyTorch model to be trained.
cycle_start (int): Begininning of the first SWAG averaging cycle.
cycle_length (int): Number of epochs between SWAG updates. The
first update occurs at :attr:`cycle_start` + :attr:`cycle_length`.
scale (float, optional): Scale of the Gaussian. Defaults to 1.0.
diag_covariance (bool, optional): Whether to use a diagonal
covariance. Defaults to False.
max_num_models (int, optional): Maximum number of models to store.
Defaults to 0.
var_clamp (float, optional): Minimum variance. Defaults to 1e-30.
num_estimators (int, optional): Number of posterior estimates to
use. Defaults to 16.
Reference:
Maddox, W. J. et al. A simple baseline for bayesian uncertainty in
deep learning. In NeurIPS 2019.
Note:
Originates from https://github.com/wjmaddox/swa_gaussian.
"""
super().__init__(model, cycle_start, cycle_length)
_swag_checks(scale, max_num_models, var_clamp)
self.num_estimators = num_estimators
self.scale = scale
self.diag_covariance = diag_covariance
self.max_num_models = max_num_models
self.var_clamp = var_clamp
self.initialize_stats()
self.fit = False
self.samples = []
[docs] def eval_forward(self, x: Tensor) -> Tensor:
"""Forward pass of the SWAG model when in eval mode."""
if not self.fit:
return self.core_model.forward(x)
return torch.cat([mod.to(device=x.device)(x) for mod in self.samples])
[docs] def initialize_stats(self) -> None:
"""Initialize the SWAG dictionary of statistics.
For each parameter, we create a mean, squared mean, and covariance
square root. The covariance square root is only used when
`diag_covariance` is False.
"""
self.swag_stats = {}
for name_p, param in self.core_model.named_parameters():
mean, squared_mean = (
torch.zeros_like(param, device="cpu"),
torch.zeros_like(param, device="cpu"),
)
self.swag_stats[self.prfx + name_p + "_mean"] = mean
self.swag_stats[self.prfx + name_p + "_sq_mean"] = squared_mean
if not self.diag_covariance:
covariance_sqrt = torch.zeros((0, param.numel()), device="cpu")
self.swag_stats[self.prfx + name_p + "_covariance_sqrt"] = covariance_sqrt
[docs] @torch.no_grad()
def update_wrapper(self, epoch: int) -> None:
"""Update the SWAG posterior.
The update is performed if the epoch is greater than the cycle start
and the difference between the epoch and the cycle start is a multiple
of the cycle length.
Args:
epoch (int): Current epoch.
"""
if not (epoch > self.cycle_start and (epoch - self.cycle_start) % self.cycle_length == 0):
return
for name_p, param in self.core_model.named_parameters():
mean = self.swag_stats[self.prfx + name_p + "_mean"]
squared_mean = self.swag_stats[self.prfx + name_p + "_sq_mean"]
new_param = param.data.detach().cpu()
mean = mean * self.num_avgd_models / (self.num_avgd_models + 1) + new_param / (
self.num_avgd_models + 1
)
squared_mean = squared_mean * self.num_avgd_models / (
self.num_avgd_models + 1
) + new_param**2 / (self.num_avgd_models + 1)
self.swag_stats[self.prfx + name_p + "_mean"] = mean
self.swag_stats[self.prfx + name_p + "_sq_mean"] = squared_mean
if not self.diag_covariance:
covariance_sqrt = self.swag_stats[self.prfx + name_p + "_covariance_sqrt"]
dev = (new_param - mean).view(-1, 1).t()
covariance_sqrt = torch.cat((covariance_sqrt, dev), dim=0)
if self.num_avgd_models + 1 > self.max_num_models:
covariance_sqrt = covariance_sqrt[1:, :]
self.swag_stats[self.prfx + name_p + "_covariance_sqrt"] = covariance_sqrt
self.num_avgd_models += 1
self.samples = [
self.sample(self.scale, self.diag_covariance) for _ in range(self.num_estimators)
]
self.need_bn_update = True
self.fit = True
[docs] def bn_update(self, loader: DataLoader, device: torch.device) -> None:
"""Update the bachnorm statistics of the current SWAG samples.
Args:
loader (DataLoader): DataLoader to update the batchnorm statistics.
device (torch.device): Device to perform the update.
"""
if self.need_bn_update:
for mod in self.samples:
torch.optim.swa_utils.update_bn(loader, mod, device=device)
self.need_bn_update = False
[docs] def sample(
self,
scale: float,
diag_covariance: bool | None = None,
block: bool = False,
seed: int | None = None,
) -> nn.Module:
"""Sample a model from the SWAG posterior.
Args:
scale (float): Rescale coefficient of the Gaussian.
diag_covariance (bool, optional): Whether to use a diagonal
covariance. Defaults to None.
block (bool, optional): Whether to sample a block diagonal
covariance. Defaults to False.
seed (int, optional): Random seed. Defaults to None.
Returns:
nn.Module: Sampled model.
"""
if seed is not None:
torch.manual_seed(seed)
if diag_covariance is None:
diag_covariance = self.diag_covariance
if not diag_covariance and self.diag_covariance:
raise ValueError("Cannot sample full rank from diagonal covariance matrix.")
if not block:
return self._fullrank_sample(scale, diag_covariance)
raise NotImplementedError("Raise an issue if you need this feature.")
def _fullrank_sample(self, scale: float, diagonal_covariance: bool) -> nn.Module:
new_sample = copy.deepcopy(self.core_model)
for name_p, param in new_sample.named_parameters():
mean = self.swag_stats[self.prfx + name_p + "_mean"]
sq_mean = self.swag_stats[self.prfx + name_p + "_sq_mean"]
if not diagonal_covariance:
cov_mat_sqrt = self.swag_stats[self.prfx + name_p + "_covariance_sqrt"]
var = torch.clamp(sq_mean - mean**2, self.var_clamp)
var_sample = var.sqrt() * torch.randn_like(var, requires_grad=False)
if not diagonal_covariance:
cov_sample = cov_mat_sqrt.t() @ torch.randn((cov_mat_sqrt.size(0),))
cov_sample /= (self.max_num_models - 1) ** 0.5
var_sample += cov_sample.view_as(var_sample)
sample = mean + scale**0.5 * var_sample
param.data = sample.to(device="cpu", dtype=param.dtype)
return new_sample
def _save_to_state_dict(self, destination, prefix: str, keep_vars: bool):
"""Add the SWAG statistics to the destination dict."""
super()._save_to_state_dict(destination, prefix, keep_vars)
destination |= self.swag_stats
[docs] def state_dict(self, *args, destination=None, prefix="", keep_vars=False) -> Mapping:
"""Add the SWAG statistics to the state dict."""
return self.swag_stats | super().state_dict(
*args, destination=destination, prefix=prefix, keep_vars=keep_vars
)
def _load_swag_stats(self, state_dict: Mapping):
"""Load the SWAG statistics from the state dict."""
self.swag_stats = {k: v for k, v in state_dict.items() if k in self.swag_stats}
for k in self.swag_stats:
del state_dict[k]
self.samples = [
self.sample(self.scale, self.diag_covariance) for _ in range(self.num_estimators)
]
self.need_bn_update = True
self.fit = True
def load_state_dict(self, state_dict: Mapping, strict: bool = True, assign: bool = False):
self._load_swag_stats(state_dict)
return super().load_state_dict(state_dict, strict, assign)
def compute_logdet(self, block=False):
raise NotImplementedError("Raise an issue if you need this feature.")
def compute_logprob(self, vec=None, block=False, diag=False):
raise NotImplementedError("Raise an issue if you need this feature.")
def _swag_checks(scale: float, max_num_models: int, var_clamp: float) -> None:
if scale < 0:
raise ValueError(f"`scale` must be non-negative. Got {scale}.")
if max_num_models < 0:
raise ValueError(f"`max_num_models` must be non-negative. Got {max_num_models}.")
if var_clamp < 0:
raise ValueError(f"`var_clamp` must be non-negative. Got {var_clamp}.")