Source code for torch_uncertainty.baselines.classification.vgg

from typing import Literal

from torch import nn
from torch.optim import Optimizer

from torch_uncertainty.models import mc_dropout
from torch_uncertainty.models.classification import (
    packed_vgg,
    vgg,
)
from torch_uncertainty.ood_criteria import TUOODCriterion
from torch_uncertainty.routines.classification import ClassificationRoutine
from torch_uncertainty.transforms import RepeatTarget

ENSEMBLE_METHODS = ["mc-dropout", "packed"]


[docs] class VGGBaseline(ClassificationRoutine): versions = { "std": vgg, "mc-dropout": vgg, "packed": packed_vgg, } archs = [11, 13, 16, 19] def __init__( self, num_classes: int, in_channels: int, loss: nn.Module, version: Literal["std", "mc-dropout", "packed"], arch: int, style: str = "imagenet", num_estimators: int = 1, dropout_rate: float = 0.0, last_layer_dropout: bool = False, optim_recipe: dict | Optimizer | None = None, mixup_params: dict | None = None, groups: int = 1, alpha: int | None = None, gamma: int = 1, ood_criterion: type[TUOODCriterion] | str = "msp", log_plots: bool = False, save_in_csv: bool = False, eval_ood: bool = False, eval_shift: bool = False, eval_grouping_loss: bool = False, ) -> None: r"""VGG backbone baseline for classification providing support for various versions and architectures. Args: num_classes (int): Number of classes to predict. in_channels (int): Number of input channels. loss (nn.Module): Training loss. optim_recipe (Any): optimization recipe, corresponds to what expect the `LightningModule.configure_optimizers() <https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#configure-optimizers>`_ method. version (str): Determines which VGG version to use: - ``"std"``: original VGG - ``"mc-dropout"``: Monte Carlo Dropout VGG - ``"packed"``: Packed-Ensembles VGG arch (int): Determines which VGG architecture to use: - ``11``: VGG-11 - ``13``: VGG-13 - ``16``: VGG-16 - ``19``: VGG-19 style (str, optional): Which VGG style to use. Defaults to ``imagenet``. num_estimators (int, optional): Number of estimators in the ensemble. Only used if :attr:`version` is either ``"packed"``, ``"batched"`` or ``"masked"`` Defaults to ``None``. dropout_rate (float, optional): Dropout rate. Defaults to ``0.0``. mixup_params (dict, optional): Mixup parameters. Can include mixtype, mixmode, dist_sim, kernel_tau_max, kernel_tau_std, mixup_alpha, and cutmix_alpha. If None, no augmentations. Defaults to ``None``. last_layer_dropout (bool): whether to apply dropout to the last layer only. groups (int, optional): Number of groups in convolutions. Defaults to ``1``. alpha (float, optional): Expansion factor affecting the width of the estimators. Only used if :attr:`version` is ``"packed"``. Defaults to ``None``. gamma (int, optional): Number of groups within each estimator. Only used if :attr:`version` is ``"packed"`` and scales with :attr:`groups`. Defaults to ``1s``. ood_criterion (TUOODCriterion, optional): Criterion for the binary OOD detection task. Defaults to None which amounts to the maximum softmax probability score (MSP). log_plots (bool, optional): Indicates whether to log the plots or not. Defaults to ``False``. save_in_csv (bool, optional): Indicates whether to save the results in a csv file or not. Defaults to ``False``. eval_ood (bool, optional): Indicates whether to evaluate the OOD detection or not. Defaults to ``False``. eval_shift (bool): Whether to evaluate on shifted data. Defaults to ``False``. eval_grouping_loss (bool, optional): Indicates whether to evaluate the grouping loss or not. Defaults to ``False``. Raises: ValueError: If :attr:`version` is not either ``"std"``, ``"packed"``, ``"batched"`` or ``"masked"``. Returns: LightningModule: VGG baseline ready for training and evaluation. """ params = { "dropout_rate": dropout_rate, "in_channels": in_channels, "num_classes": num_classes, "style": style, "groups": groups, "arch": arch, } if version not in self.versions: raise ValueError(f"Unknown version: {version}") format_batch_fn = nn.Identity() if version == "std": params |= { "dropout_rate": dropout_rate, } elif version == "mc-dropout": params |= { "dropout_rate": dropout_rate, "num_estimators": num_estimators, } if version in ENSEMBLE_METHODS: params |= { "num_estimators": num_estimators, } if version != "mc-dropout": format_batch_fn = RepeatTarget(num_repeats=num_estimators) if version == "packed": params |= { "alpha": alpha, "style": style, "gamma": gamma, } if version == "mc-dropout": # std VGGs don't have `num_estimators` del params["num_estimators"] model = self.versions[version](**params) if version == "mc-dropout": model = mc_dropout( model=model, num_estimators=num_estimators, last_layer=last_layer_dropout, ) super().__init__( num_classes=num_classes, model=model, loss=loss, is_ensemble=version in ENSEMBLE_METHODS, format_batch_fn=format_batch_fn, optim_recipe=optim_recipe, mixup_params=mixup_params, eval_ood=eval_ood, eval_shift=eval_shift, ood_criterion=ood_criterion, log_plots=log_plots, save_in_csv=save_in_csv, eval_grouping_loss=eval_grouping_loss, ) self.save_hyperparameters(ignore=["loss"])