VGGBaseline#
- class torch_uncertainty.baselines.classification.VGGBaseline(num_classes, in_channels, loss, version, arch, style='imagenet', num_estimators=1, dropout_rate=0.0, last_layer_dropout=False, optim_recipe=None, mixup_params=None, groups=1, alpha=None, gamma=1, ood_criterion='msp', log_plots=False, save_in_csv=False, eval_ood=False, eval_shift=False, eval_grouping_loss=False)[source]#
VGG backbone baseline for classification providing support for various versions and architectures.
- Parameters:
num_classes (int) – Number of classes to predict.
in_channels (int) – Number of input channels.
loss (nn.Module) – Training loss.
optim_recipe (Any) – optimization recipe, corresponds to what expect the LightningModule.configure_optimizers() method.
version (str) –
Determines which VGG version to use:
"std": original VGG"mc-dropout": Monte Carlo Dropout VGG"packed": Packed-Ensembles VGG
arch (int) –
Determines which VGG architecture to use:
11: VGG-1113: VGG-1316: VGG-1619: VGG-19
style (str, optional) – Which VGG style to use. Defaults to
imagenet.num_estimators (int, optional) – Number of estimators in the ensemble. Only used if
versionis either"packed","batched"or"masked"Defaults toNone.dropout_rate (float, optional) – Dropout rate. Defaults to
0.0.mixup_params (dict, optional) – Mixup parameters. Can include mixtype, mixmode, dist_sim, kernel_tau_max, kernel_tau_std, mixup_alpha, and cutmix_alpha. If None, no augmentations. Defaults to
None.last_layer_dropout (bool) – whether to apply dropout to the last layer only.
groups (int, optional) – Number of groups in convolutions. Defaults to
1.alpha (float, optional) – Expansion factor affecting the width of the estimators. Only used if
versionis"packed". Defaults toNone.gamma (int, optional) – Number of groups within each estimator. Only used if
versionis"packed"and scales withgroups. Defaults to1s.ood_criterion (TUOODCriterion, optional) – Criterion for the binary OOD detection task. Defaults to None which amounts to the maximum softmax probability score (MSP).
log_plots (bool, optional) – Indicates whether to log the plots or not. Defaults to
False.save_in_csv (bool, optional) – Indicates whether to save the results in a csv file or not. Defaults to
False.eval_ood (bool, optional) – Indicates whether to evaluate the OOD detection or not. Defaults to
False.eval_shift (bool) – Whether to evaluate on shifted data. Defaults to
False.eval_grouping_loss (bool, optional) – Indicates whether to evaluate the grouping loss or not. Defaults to
False.
- Raises:
ValueError – If
versionis not either"std","packed","batched"or"masked".- Returns:
VGG baseline ready for training and evaluation.
- Return type:
LightningModule