MeanIntersectionOverUnion#
- class torch_uncertainty.metrics.segmentation.MeanIntersectionOverUnion(num_classes, top_k=1, ignore_index=None, validate_args=True, **kwargs)[source]#
Computes Mean Intersection over Union (IoU) score.
- Parameters:
num_classes (int) – Integer specifying the number of classes.
top_k (int, optional) – Number of highest probability or logit score predictions considered to find the correct label. Only works when
predscontain probabilities/logits. Defaults to1.ignore_index (int | None, optional) – Specifies a target value that is ignored and does not contribute to the metric calculation. Defaults to
None.validate_args (bool, optional) – Bool indicating if input arguments and tensors should be validated for correctness. Set to
Falsefor faster computations. Defaults toTrue.**kwargs – kwargs: Additional keyword arguments, see Advanced metric settings for more info.
- Shape:
As input to
forwardandupdatethe metric accepts the following input:preds (
Tensor): An int tensor of shape(B, *)or float tensor of shape(B, C, *). If preds is a floating point we applytorch.argmaxalong theCdimension to automatically convert probabilities/logits into an int tensor.target (
Tensor): An int tensor of shape(B, *).
As output to
forwardandcomputethe metric returns the following output:mean_iou (
Tensor): The computed Mean Intersection over Union (IoU) score. A tensor containing a single float value.