masked_resnet#
- torch_uncertainty.models.masked_resnet(in_channels, num_classes, arch, num_estimators, scale, width_multiplier=1.0, groups=1, conv_bias=True, dropout_rate=0, style='imagenet', normalization_layer=<class 'torch.nn.modules.batchnorm.BatchNorm2d'>, repeat_strategy='paper')[source]#
Masksembles of ResNet.
- Parameters:
in_channels (int) – Number of input channels.
num_classes (int) – Number of classes to predict.
arch (int) – The architecture of the ResNet.
num_estimators (int) – Number of estimators in the ensemble.
scale (float) – The scale of the mask.
width_multiplier (float) – Width multiplier. Defaults to 1.
groups (int) – Number of groups within each estimator. Defaults to 1.
conv_bias (bool) – Whether to use bias in convolutions. Defaults to
True.dropout_rate (float) – Dropout rate. Defaults to
0.style (str, optional) – The style of the model. Defaults to
"imagenet".normalization_layer (nn.Module, optional) – Normalization layer.
repeat_strategy ("legacy"|"paper", optional) –
The repeat strategy to use during training:
”legacy”: Repeat inputs for each estimator during both training and evaluation.
”paper”(default): Repeat inputs for each estimator only during evaluation.
- Returns:
A Masksembles-style ResNet.
- Return type:
_MaskedResNet