AUSE¶
- class torch_uncertainty.metrics.AUSE(**kwargs)[source]¶
The Area Under the Sparsification Error curve (AUSE) metric to estimate the quality of the uncertainty estimates, i.e., how much they coincide with the true errors.
- Parameters:
kwargs – Additional keyword arguments, see Advanced metric settings.
- Reference:
From the paper Uncertainty estimates and multi-hypotheses for optical flow. In ECCV, 2018.
- Inputs:
scores
: Uncertainty scores of shape \((B,)\). A higher score means a higher uncertainty.errors
: Errors of shape \((B,)\),
where \(B\) is the batch size.
Note
A higher AUSE means a lower quality of the uncertainty estimates.
- compute()[source]¶
Compute the Area Under the Sparsification Error curve (AUSE) based on inputs passed to
update
.- Returns:
The AUSE.
- Return type:
Tensor
- plot(ax=None, plot_oracle=True, plot_value=True)[source]¶
Plot the sparsification curve corresponding to the inputs passed to
update
, and the oracle sparsification curve.- Parameters:
ax (Axes | None, optional) – An matplotlib axis object. If provided will add plot to this axis. Defaults to None.
plot_oracle (bool, optional) – Whether to plot the oracle sparsification curve. Defaults to True.
plot_value (bool, optional) – Whether to plot the AUSE value. Defaults to True.
- Returns:
Figure object and Axes object
- Return type:
tuple[[Figure | None], Axes]