SILog¶
- class torch_uncertainty.metrics.regression.SILog(sqrt=False, lmbda=1.0, **kwargs)[source]¶
The Scale-Invariant Logarithmic Loss metric.
\[\text{SILog} = \frac{1}{N} \sum_{i=1}^{N} \left(\log(y_i) - \log(\hat{y_i})\right)^2 - \left(\frac{1}{N} \sum_{i=1}^{N} \log(y_i) \right)^2,\]where \(N\) is the batch size, \(y_i\) is a tensor of target values and \(\hat{y_i}\) is a tensor of prediction. Return the square root of SILog by setting
sqrt
to True.- Parameters:
sqrt – If True, return the square root of the metric. Defaults to False.
lmbda – The regularization parameter on the variance of error. Defaults to 1.0.
kwargs – Additional keyword arguments, see Advanced metric settings.
- Reference:
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network. David Eigen, Christian Puhrsch, Rob Fergus. NeurIPS 2014. From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation. Jin Han Lee, Myung-Kyu Han, Dong Wook Ko and Il Hong Suh. (For
lmbda
)