MUAD#
- class torch_uncertainty.datasets.MUAD(root, split, version='full', min_depth=None, max_depth=None, target_type='semantic', transforms=None, download=False, use_train_ids=True)[source]#
The MUAD Dataset.
- Parameters:
root (str | Path) – Root directory of dataset where directory
leftImg8bitandleftLabelorleftDepthare located.split (str, optional) – The image split to use,
train,val,testorood.version (str, optional) – The version of the dataset to use,
smallorfull. Defaults tofull.min_depth (float, optional) – The maximum depth value to use if target_type is
depth. Defaults toNone.max_depth (float, optional) – The maximum depth value to use if target_type is
depth. Defaults toNone.target_type (str, optional) – The type of target to use,
semanticordepth. Defaults tosemantic.transforms (callable, optional) – A function/transform that takes in a tuple of PIL images and returns a transformed version. Defaults to
None.download (bool, optional) – If
True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Defaults toFalse.use_train_ids (bool, optional) – If
True, uses the train ids instead of the original ids. Defaults toTrue. Note that this is only used for thesemantictarget type.
- Reference:
Note
MUAD cannot be used for commercial purposes. Read MUAD’s license carefully before using it and verify that you can comply.