MeanSquaredLogError¶
- class torch_uncertainty.metrics.regression.MeanSquaredLogError(squared=True, **kwargs)[source]¶
MeanSquaredLogError (MSELog) regression metric.
\[\text{MSELog} = \frac{1}{N}\sum_i^N (\log \hat{y_i} - \log y_i)^2\]- where \(y\) is a tensor of target values, and \(\hat{y}\) is a
tensor of predictions.
- As input to
forward
andupdate
the metric accepts the following input:
preds
(Tensor
): Predictions from modeltarget
(Tensor
): Ground truth values
- As output of
forward
andcompute
the metric returns the following output:
mse_log
(Tensor
): A tensor with therelative mean absolute error over the state
- Parameters:
squared – If True returns MSELog value, if False returns EMSELog value.
kwargs – Additional keyword arguments, see Advanced metric settings.
- Reference:
- As in e.g. From big to small: Multi-scale local planar guidance for
monocular depth estimation