MeanSquaredErrorInverse¶
- class torch_uncertainty.metrics.regression.MeanSquaredErrorInverse(squared=True, num_outputs=1, unit='km', **kwargs)[source]¶
Mean Squared Error of the inverse predictions (iMSE).
\[\text{iMSE} = \frac{1}{N}\sum_i^N(\frac{1}{y_i} - \frac{1}{\hat{y_i}})^2\]- Where \(y\) is a tensor of target values, and \(\hat{y}\) is a
tensor of predictions.
- Both are scaled by a factor of
unit_factor
depending on the unit
given.- As input to
forward
andupdate
the metric accepts the following input:
preds
(Tensor
): Predictions from modeltarget
(Tensor
): Ground truth values
- As output of
forward
andcompute
the metric returns the following output:
mean_squared_error
(Tensor
): A tensor with the meansquared error
- Parameters:
squared – If True returns MSE value, if False returns RMSE value.
num_outputs – Number of outputs in multioutput setting.
unit – Unit for the computation of the metric. Must be one of ‘mm’, ‘m’, ‘km’. Defauts to ‘km’.
kwargs – Additional keyword arguments.