DECLoss¶
- class torch_uncertainty.losses.DECLoss(annealing_step=None, reg_weight=None, loss_type='log', reduction='mean')[source]¶
The deep evidential classification loss.
- Parameters:
annealing_step (int) – Annealing step for the weight of the
term. (regularization) –
reg_weight (float) – Fixed weight of the regularization term.
loss_type (str, optional) – Specifies the loss type to apply to the
parameters (Dirichlet) –
'mse'
|'log'
|'digamma'
.reduction (str, optional) – Specifies the reduction to apply to the
output –
'none'
|'mean'
|'sum'
.
- Reference:
Sensoy, M., Kaplan, L., & Kandemir, M. (2018). Evidential deep learning to quantify classification uncertainty. NeurIPS 2018. https://arxiv.org/abs/1806.01768.