Cityscapes#
- class torch_uncertainty.datasets.segmentation.Cityscapes(root, split='train', mode='fine', target_type='instance', transform=None, target_transform=None, transforms=None)[source]#
Cityscapes dataset wrapper with train ID color mapping.
This class extends the TVCityscapes dataset to provide a fixed color palette for visualization and encode/decode utilities for semantic segmentation targets using Cityscapes train IDs. It also sets up mapping from train IDs to RGB colors for easier interpretation of predicted masks.
- Variables:
color_palette (list[tuple[int, int, int]]) – List of RGB tuples for each class label in the Cityscapes dataset.
train_id_to_color (torch.Tensor) – Tensor mapping train IDs to RGB colors for output decoding.
- Parameters:
root (str) – Root directory of the Cityscapes dataset.
split (str, optional) – Dataset split to use, such as “train”, “val”, or “test”.
mode (str, optional) – Annotation mode, e.g., “fine” or “coarse”.
target_type (list[str] | str, optional) – One or more target types to load (“instance”, “semantic”, etc.).
transform (Callable[..., Any] | None, optional) – Transformation applied to the input image.
target_transform (Callable[..., Any] | None, optional) – Transformation applied to the target.
transforms (Callable[..., Any] | None, optional) – Combined transformation for image and target.
- decode_target(target)[source]#
Decode target tensor to RGB tensor.
- Parameters:
target (torch.Tensor) – Target RGB tensor.
- Returns:
Decoded target.
- Return type:
Image.Image