Shortcuts

NormalInverseGammaConvNd

class torch_uncertainty.layers.distributions.NormalInverseGammaConvNd(base_layer, event_dim, min_lmbda=1e-06, min_alpha=1e-06, min_beta=1e-06, **layer_args)[source]

Normal-Inverse-Gamma Distribution Convolutional Density Layer.

Parameters:
  • base_layer (type[nn.Module]) – The base layer class.

  • event_dim (int) – The number of event dimensions.

  • min_lmbda (float) – The minimal value of the \(\lambda\) parameter.

  • min_alpha (float) – The minimal value of the \(\alpha\) parameter.

  • min_beta (float) – The minimal value of the \(\beta\) parameter.

  • **layer_args – Additional arguments for the base layer.

Shape:
  • Input: \((N, C_{in}, \ast)\) where \(\ast\) means any number of dimensions and \(C_{in} = \text{in_channels}\) and \(N\) is the batch size.

  • Output: A dict with the following keys

    • "loc": The mean of the Normal-Inverse-Gamma distribution of shape \((N, C_{out}, \ast)\) where \(C_{out} = \text{out_channels}\).

    • "lmbda": The lambda parameter of the Normal-Inverse-Gamma distribution of shape \((N, C_{out}, \ast)\).

    • "alpha": The alpha parameter of the Normal-Inverse-Gamma distribution of shape \((N, C_{out}, \ast)\).

    • "beta": The beta parameter of the Normal-Inverse-Gamma distribution of shape \((N, C_{out}, \ast)\).

Source: