ConfidencePenaltyLoss¶
- class torch_uncertainty.losses.ConfidencePenaltyLoss(reg_weight=1, reduction='mean', eps=1e-06)[source]¶
The Confidence Penalty Loss.
- Parameters:
reg_weight (float, optional) – The weight of the regularization term.
reduction (str, optional) – specifies the reduction to apply to the
output –
'none'
|'mean'
|'sum'
. Defaults to “mean”.eps (float, optional) – A small value to avoid numerical instability. Defaults to 1e-6.
- Reference:
Gabriel Pereyra: Regularizing neural networks by penalizing confident output distributions. https://arxiv.org/pdf/1701.06548.