UCIRegressionDataModule#
- class torch_uncertainty.datamodules.UCIRegressionDataModule(root, dataset_name, batch_size, eval_batch_size=None, val_split=0.0, num_workers=1, pin_memory=True, persistent_workers=True, input_shape=None, split_seed=42)[source]#
The UCI regression datasets.
- Parameters:
root (string) – Root directory of the datasets.
dataset_name (string, optional) – The name of the dataset. One of
boston-housing
,concrete
,energy
,kin8nm
,naval-propulsion-plant
,power-plant
,protein
,wine-quality-red
, andyacht
.batch_size (int) – The batch size for training and testing.
eval_batch_size (int | None) – Number of samples per batch during evaluation (val and test). Set to
batch_size
ifNone
. Defaults toNone
.val_split (float, optional) – Share of validation samples. Defaults to
0
.num_workers (int, optional) – How many subprocesses to use for data loading. Defaults to
1
.pin_memory (bool, optional) – Whether to pin memory in the GPU. Defaults to
True
.persistent_workers (bool, optional) – Whether to use persistent workers. Defaults to
True
.input_shape (tuple, optional) – The shape of the input data. Defaults to
None
.split_seed (int, optional) – The seed to use for splitting the dataset. Defaults to
42
.