packed_resnet#
- torch_uncertainty.models.packed_resnet(in_channels, num_classes, arch, num_estimators, alpha, gamma, conv_bias=False, width_multiplier=1.0, groups=1, dropout_rate=0, style='imagenet', normalization_layer=<class 'torch.nn.modules.batchnorm.BatchNorm2d'>, pretrained=False, linear_implementation='conv1d')[source]#
Packed-Ensembles of ResNet.
- Parameters:
in_channels (int) – Number of input channels.
num_classes (int) – Number of classes to predict.
arch (int) – The architecture of the ResNet.
conv_bias (bool) – Whether to use bias in convolutions. Defaults to
True.dropout_rate (float) – Dropout rate. Defaults to
0.num_estimators (int) – Number of estimators in the ensemble.
alpha (int) – Expansion factor affecting the width of the estimators.
gamma (int) – Number of groups within each estimator.
width_multiplier (float) – Width multiplier. Defaults to
1.groups (int) – Number of groups within each estimator group.
style (bool, optional) – Whether to use the ImageNet structure. Defaults to
True.normalization_layer (nn.Module, optional) – Normalization layer.
pretrained (bool, optional) – Whether to load pretrained weights. Defaults to
False.linear_implementation (str, optional) – Implementation of the packed linear layer. Defaults to
"conv1d".
- Returns:
A Packed-Ensembles ResNet.
- Return type:
_PackedResNet