batched_inception_time#
- torch_uncertainty.models.batched_inception_time(in_channels, num_classes, num_estimators, kernel_size=40, embed_dim=32, num_blocks=6, dropout=0.0, residual=True, repeat_strategy='paper')[source]#
BatchEnsemble of InceptionTime.
- Parameters:
in_channels (int) – Number of input channels.
num_classes (int) – Number of output classes.
num_estimators (int) – Number of estimators for BatchEnsemble.
kernel_size (int) – Size of the convolutional kernels. Default is
40.embed_dim (int) – Dimension of the embedding. Default is
32.num_blocks (int) – Number of inception blocks. Default is
6.dropout (float) – Dropout rate. Default is
0.0.residual (bool) – Whether to use residual connections. Default is
True.repeat_strategy ("legacy"|"paper", optional) –
The repeat strategy to use during training:
”legacy”: Repeat inputs for each estimator during both training and evaluation.
”paper”(default): Repeat inputs for each estimator only during evaluation.
- Returns:
An instance of the InceptionTime model.
- Return type:
_BatchedInceptionTime